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1. Introduction

Recently remarkable progress has been achieved in studying integrability properties within

the arena of the AdS/CFT correspondence [1]. The ideal setting for performing this anal-

ysis is provided by the planar limit of the superconformal N = 4 SYM theory and its

string dual in the AdS5 × S5 background. Indeed major efforts have been devoted to the

comparison of the spectra on the two sides of the correspondence, i.e. the anomalous di-

mensions of gauge invariant operators in the gauge theory versus the mass spectra in the

corresponding string sector. Higher loop perturbative calculations in the gauge theory

have been performed taking advantage of the quantum spin chain description for which

an Hamiltonian and a corresponding asymptotic Bethe ansatz can be constructed [2 – 6].

In particular important results have been obtained for operators of infinite length, since

in this case the dynamics simplifies considerably and it is essentially encoded in an exact,

factorized S-matrix corrected by a dressing phase [7 – 10].

In order to deepen our understanding it becomes crucial to take into account finite size

effects. On the string theory side there have been recent papers addressing this issue and

studying finite size contributions in the spectrum of magnons [11 – 18]. In [19] wrapping

effects in some toy models were studied.

On the field theory side, i.e. in the N = 4 SYM theory, finite size effects arise

from wrapping interactions [6, 20]. The simplest situation in which this kind of inter-

actions shows up is at four loops in the anomalous dimensions of the composite operator

tr(φ[Z, φ]Z). We have performed this calculation [21, 22] and found a new type of contri-

butions proportional to ζ(5) that increases the order of transcendentality of the anomalous
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dimension.1 While this result is not in contradiction with the Kotikov-Lipatov transcen-

dentality in the universal scaling function, it was not expected in previous conjectures for

the anomalous dimension of the composite operator [24, 10, 25]. It would be nice to have an

independent check of our result,2 but if one attempts higher order calculations the algebra

becomes immediately too cumbersome to deal with. Alternatively one can study a less

symmetric theory that might exhibit new features to be compared to string theory known

results. Such an example is provided by an exactly marginal deformation of N = 4 SYM

theory preserving N = 1 supersymmetry. The deformed theory is obtained modifying the

original N = 4 superpotential for the chiral superfields in the following way

ig tr (φψ Z − φZ ψ) −→ ih tr
(

eiπβ φψ Z − e−iπβ φZ ψ
)

(1.1)

where in general h and β are complex constants. In [27] it was argued that this β-

deformed N = 1 theory becomes conformally invariant, i.e. the deformation becomes ex-

actly marginal, if one condition is satisfied by the constants h and β. More precisely it has

been shown that for a real deformation parameter this theory becomes superconformal, in

the planar limit to all perturbative orders [28], if

hh̄ = g2 , (1.2)

where g = gYM is the Yang-Mills coupling constant. We also define the ’t Hooft coupling

constant

λ =
g2N

16π2
. (1.3)

Via the AdS/CFT correspondence this β-deformed N = 4 SYM theory is expected

to be equivalent to the Lunin-Maldacena string theory background [29]. The existence

of integrable structures in the deformed string background has been analyzed in [30, 31].

Finite size effects of single magnons were discussed in [32]. Integrability of the deformed

field theory was studied in [33, 34].

In this paper we want to study the anomalous dimension of short operators in the

superconformal deformed N = 4 SYM theory including wrapping contributions to be

compared to finite size effects in the corresponding string theory.

The anomalous dimension for a composite operator O is extracted from the 1/ε pole of

the graphs contributing to its renormalization: for an operator undergoing multiplicative

renormalization it is defined as

γ(O) = lim
ε→0

[

εg
d

dg
logZO(g, ε)

]

, (1.4)

where

Oren = ZOObare .

In presence of mixing among different operators, the second equation should be understood

in matrix form and the first one is still valid for the eigenstates of the renormalization

matrix.

1Following our paper a four-loop calculation, not in accordance with our result, was presented in [23].
2Such a check is provided by the later result in [26].
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Our strategy will be the following:

We perform perturbative calculations using a superfield approach. All the superspace

conventions, D-algebra techniques and shortcuts are explained in detail in [35, 22] and will

not be repeated here.

We compute higher-loop integrals using the Gegenbauer polynomial x-space tech-

nique [36] which we will review and refine in a forthcoming publication [37]. We will

also make use repeatedly of the results already listed in [22].

Here we focus primarily on the calculations of the anomalous dimensions of composite

operators that exhibit relevant differences as compared to the N = 4 SYM case. The

major novelty of the deformed theory is given by the fact that one-impurity states are

not protected by supersymmetry. The shortest3 such a state is given by the length-three,

single-impurity operator

O1,3 = tr(φZZ) . (1.5)

We will compute its anomalous dimensions up to three loops. In order to achieve this goal

we proceed following the same lines of reasoning as in [21, 22].

First we write the dilatation operator up to the third order for the β-deformed theory.

In this way we obtain the correct Hamiltonian only for operators in the asymptotic limit.

In order to derive the correct result when it is applied to a state of length three, we

have to subtract the range four interactions and add explicitly the wrapping contributions.

This is done in sections 2 and 3. (More precisely in section 2 we compute the deformed

dilatation operator up to fourth order since it will be useful later on).

Then using the same technique we compute the anomalous dimension of the length-

four, single state operator

O1,4 = tr(φZZZ) (1.6)

up to four loops. This computation is presented in the first part of section 4.

We turn to the length-four, two-impurity operators

tr(φφZZ) , tr(φZφZ) (1.7)

in the second part of section 4, where we exploit the knowledge of the wrapping dilatation

operator for the undeformed case [22] to compute their anomalous dimensions.

Finally we analyze again the simplest single-impurity operator O1,L = tr(φZL−1), and

we attempt to go to higher order L in perturbation theory. Even if exact calculations are

too difficult and out of reach, still we are able to compute whole classes of diagrams that

allow us to make some plausible conjectures. These are described and collected in the last

section of the paper.

2. Dilatation operator

As anticipated in the introduction in order to compute the anomalous dimensions of single-

impurity operators it is convenient to make use of the asymptotic dilatation operator. In

3The length-two operator tr(φZ) was shown to be protected in [38, 39].
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fact this allows to avoid the explicit computation of a large number of diagrams. Thus

we need derive the expression of the asymptotic dilatation operator for the β-deformed

theory. We now show how this can be obtained from the knowledge of the Hamiltonian of

the N = 4 theory.

First of all we recall the form of a standard permutation of fields at sites i and j which

is given by

Pi,j =
1

2
[1i,j + ~σi · ~σj ] =

1

2

[

1i,j + σ3
i σ

3
j + σ+

i σ
−

j + σ−i σ
+
j

]

. (2.1)

Using these permutations we can build a set of standard basis operators

{a1, . . . , an} =

L−1
∑

r=0

Pa1+r, a1+r+1 · · ·Pan+r, an+r+1 . (2.2)

The dilatation operator for the N = 4 theory can be written in terms of these operators.

We now look for a similar set of basis operators for the deformed theory. To this end

we consider deformed permutations [33]

Pi,j =
1

2

[

1i,j + σ3
i σ

3
j + q2 σ+

i σ
−

j + q̄2 σ−i σ
+
j

]

, q ≡ eiπβ (2.3)

and define corresponding deformed basis operators:

{a1, . . . , an} =
L−1
∑

r=0

Pa1+r, a1+r+1 · · ·Pan+r, an+r+1 . (2.4)

Using these definitions the expansions of the chiral structures of Feynman diagrams in terms

of basis operators have exactly the same coefficients as in the undeformed theory [22]. They

are given by

χ(a, b, c, d) = {} − 4{1} + {a, b} + {a, c} + {a, d} + {b, c} + {b, d} + {c, d}

− {a, b, c} − {a, b, d} − {a, c, d} − {b, c, d} + {a, b, c, d} ,

χ(a, b, c) = −{} + 3{1} − {a, b} − {a, c} − {b, c} + {a, b, c} ,

χ(a, b) = {} − 2{1} + {a, b} ,

χ(1) = −{} + {1} ,

χ() = {} .

(2.5)

Clearly since

lim
q,q̄→1

{a, b, . . . } = {a, b, . . . } (2.6)

all our deformed expressions reduce to the correct N = 4 expressions in the limit q, q̄ → 1.

Therefore the dependence on q and q̄ is encoded entirely in the deformed basis opera-

tors (2.4) and we can look for the dilatation operator as a linear combination of opera-

tors (2.4) with coefficients which are independent of q, q̄.

Since in the limit q, q̄ → 1 the deformed theory reduces correctly to the N = 4 theory,

the above observations allow us to conclude that the asymptotic dilatation operator of the
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D0 = χ()

D1 = −2χ(1)

D2 = 4χ(1) − 2[χ(1, 2) + χ(2, 1)]

D3 = −24χ(1) + 16[χ(1, 2) + χ(2, 1)] − 4χ(1, 3)

− 4iǫ2χ(1, 3, 2) + 4iǫ2χ(2, 1, 3) − 4[χ(1, 2, 3) + χ(3, 2, 1)]

D4 = + 200χ(1) − 150[χ(1, 2) + χ(2, 1)] + 8(10 + ǫ3a)χ(1, 3) − 4χ(1, 4)

+ 60[χ(1, 2, 3) + χ(3, 2, 1)]

+ (8 + 8ζ(3) + 4ǫ3a − 4iǫ3b + 2iǫ3c − 4iǫ3d)χ(1, 3, 2)

+ (8 + 8ζ(3) + 4ǫ3a + 4iǫ3b − 2iǫ3c + 4iǫ3d)χ(2, 1, 3)

− (4 + 4iǫ3b + 2iǫ3c)[χ(1, 2, 4) + χ(1, 4, 3)]

− (4 − 4iǫ3b − 2iǫ3c)[χ(1, 3, 4) + χ(2, 1, 4)]

− (12 + 8ζ(3) + 4ǫ3a)χ(2, 1, 3, 2)

+ (18 + 4ǫ3a)[χ(1, 3, 2, 4) + χ(2, 1, 4, 3)]

− (8 + 2ǫ3a + 2iǫ3b)[χ(1, 2, 4, 3) + χ(1, 4, 3, 2)]

− (8 + 2ǫ3a − 2iǫ3b)[χ(2, 1, 3, 4) + χ(3, 2, 1, 4)]

− 10[χ(1, 2, 3, 4) + χ(4, 3, 2, 1)]

Table 1: Dilatation operator for the β-deformed theory up to four loops.

deformed theory is simply given by the corresponding dilatation operator of the N = 4

SYM theory [40] through the substitutions

{a1, . . . , an} → {a1, . . . , an} . (2.7)

The deformed dilatation operator up to four loops is given explicitly in table 1. We have

verified that its eigenvalues agree with the solutions of the deformed Bethe equations [34].

The knowledge of the asymptotic dilatation operator is very useful since it allows to

compute the anomalous dimensions of long composite operators, more precisely operators

with a length such that wrapping interactions do not contribute. As emphasized above,

in the β-deformed theory single-impurity states of the SU(2) sector are not protected in

general. If the corresponding operator Oas is long enough to avoid wrapping interactions,

the anomalous dimension for such a state at a given perturbative order can be obtained

from the dilatation operator or alternatively from the all-loop result [28]

γ(Oas) = −1 +

√

1 + g2
∣

∣

∣
q −

1

q

∣

∣

∣

2 N

4π2
= −1 +

√

1 + 4g2 sin2(πβ)
N

4π2
. (2.8)

In the next two sections we will use these results for the computations of the anomalous

dimensions of short one-impurity states where finite size effects become important.
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WA = S3 =

Figure 1: Completely chiral diagrams (wrapping and subtraction).

3. One-impurity state at three loops

The three-loop contribution to the anomalous dimension of any asymptotic (i.e. of length

greater than or equal to four) single-impurity operator Oas is given by

γ3(Oas) = 256λ3 sin6(πβ) . (3.1)

This is not a priori the correct value for the anomalous dimension of the length-three,

single-impurity operator O1,3 = tr(φZZ) which is the shortest non-protected operator in

the SU(2) sector.

Its exact anomalous dimension at three loops, taking wrapping interactions into ac-

count, can be obtained from the result for long states (3.1) in two steps:

• subtract from (3.1) the contributions of range four diagrams, which are not allowed

for the length-three operator,

• add the contributions of wrapping diagrams.

As explained in [22], range four diagrams where one line is connected to the rest of the

diagram by a single vector line sum up to zero. Therefore the only relevant range four,

single-impurity diagram is the one denoted by S3 in figure 1. Its contribution is given by

S3 → (g2N)3 (q − q̄)2
(

q4 + q̄4
)

I0 ∼ −
16

3

λ3

ε
sin2(πβ) cos(4πβ) , (3.2)

where I0 is the momentum integral shown in table 3, the arrow denotes the result after

D-algebra and the ∼ symbol means that we have kept only the 1/ε pole contribution. The

corresponding term we have to subtract from the asymptotic value (3.1) is

δγ s
3 = −6 lim

ε→0
(εS3) = 32λ3 sin2(πβ) cos(4πβ) . (3.3)

Now we consider wrapping contributions. The various diagrams can be grouped into

three classes according to their chiral structure. There is one single diagram with only

chiral lines, the one labeled WA in figure 1. It gives

WA → (g2N)3 (q − q̄)2
(

q4 + q̄4
)

I0 ∼ −
16

3

λ3

ε
sin2(πβ) cos(4πβ) . (3.4)

Wrapping diagrams with chiral structures χ(2, 1) and χ(1) are shown in the appendix, in

figures 3 and 4 respectively. Graphs with chiral structure χ(1, 2), which is the reflection of

χ(2, 1), contribute exactly in the same manner. After D-algebra we find that the diagrams
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in each class sum up to zero separately. Therefore these chiral structures do not contribute

to the anomalous dimension. In the tables 4 and 5 we show a possible way to combine

these diagrams in pairs to have a full, explicit cancellation.

We conclude that the only wrapping contribution to the anomalous dimension of O1,3

comes from WA and it is equal to

δγw
3 = −6 lim

ε→0
(εWA) = 32λ3 sin2(πβ) cos(4πβ) . (3.5)

The correct three-loop anomalous dimension of O1,3 is then given by

γ3(O1,3) = γ3(Oas) − δγ s
3 + δγw

3 = 256λ3 sin6(πβ) . (3.6)

Since δγ s
3 = δγw

3 the final result happens to be equal to the asymptotic one in (3.1). This

cancellation is very likely to be a peculiarity of the three loop calculation and we expect it

would no longer hold at four loops. In fact as we will see in the next section the four-loop

anomalous dimension of the length-four O1,4 operator is different from its asymptotic value.

It would be nice to perform the four-loop calculation for O1,3 but at the fourth order

one has to deal with the insurgence of the three-vector vertex which increases dramatically

the number and the complexity of the relevant diagrams to be computed.

4. Four loops

In this section we compute the anomalous dimension of one- and two-impurity states at

four loops. In [22] we wrote down the dilatation operator comprehensive of wrapping

contributions on the length-four sector. This operator can be easily deformed as we have

done for the asymptotic case in section 2. It can be used to obtain the anomalous dimensions

both for one- and two-impurity states. However, in the single-impurity case, we chose to do

an explicit calculation as in the three-loop case, to check our results and to avoid to use the

integrability hypothesis which is hidden in the determination of the four-loop asymptotic

dilatation operator.4

4.1 Single-impurity state

Here we apply the same technique presented in the previous section to compute the exact

anomalous dimension of the length-four, single-impurity state O1,4 at four loops. Again we

start from the asymptotic result, valid for any single-impurity state Oas of length greater

than four:

γ4(Oas) = −2560λ4 sin8(πβ) . (4.1)

As in the previous case one single diagram must be subtracted in order to get rid of

the range five contributions. It contains only chiral interactions and it is shown in figure 2.

4We use (2.8) which does not rely on integrability.

– 7 –



J
H
E
P
0
8
(
2
0
0
8
)
0
5
7

S4 =

Figure 2: Range-five diagram.

WA2 → (g2N)4I2 [χ(1, 4, 3, 2) + χ(4, 1, 2, 3)]

WB1 → −(g2N)4(I3 + I4 + 2I5) [χ(1, 2, 3) + χ(3, 2, 1)]

WB2 → (g2N)4I3 [χ(1, 2, 3) + χ(3, 2, 1)]

WB3 → −(g2N)4I2 [χ(1, 2, 3) + χ(3, 2, 1)]

WB4 → (g2N)4(I2 + I4 + 2I6) [χ(1, 2, 3) + χ(3, 2, 1)]
∑

WB∗∗ → −2(g2N)4(I5 − I6) [χ(1, 2, 3) + χ(3, 2, 1)]

WE2 → −(g2N)4(I2 + I4 + 2I6) [χ(1, 2) + χ(2, 1)]

WE5 → (g2N)4I2 [χ(1, 2) + χ(2, 1)]

WE11 → (g2N)4(I3 + I4 + 2I5) [χ(1, 2) + χ(2, 1)]

WE14 → −(g2N)4I3 [χ(1, 2) + χ(2, 1)]
∑

WE∗∗ → 2(g2N)4(I5 − I6) [χ(1, 2) + χ(2, 1)]

WG11 → 2(g2N)4I1 χ(1)

WG29 → −2(g2N)4I2 χ(1)
∑

WG∗∗ → 2(g2N)4(I1 − I2)χ(1)

Table 2: Four-loop wrapping contributions for the single impurity case.

Its contribution is given by

S4 → (g2N)4I1 [χ(1, 2, 3, 4) + χ(4, 3, 2, 1)]

∼
5

4

λ4

ε

[

(q̄8 + q8) − 2(q̄6 + q6) + (q̄4 + q4)
]

=
5

2

λ4

ε
[cos(8πβ) − 2 cos(6πβ) + cos(4πβ)] .

(4.2)

Thus the term to be subtracted from (4.1) is

δγ s
4 = −8 lim

ε→0
(εS4) = −20λ4 [cos(8πβ) − 2 cos(6πβ) + cos(4πβ)] . (4.3)

The relevant wrapping diagrams are given by a subset of those contributing to the

two impurity case which are listed in figures 2 and C.1 to C.7 of [22]. In particular we

need consider the diagram WA2 and all the ones belonging to the classes WB∗∗, WE∗∗ and

WG∗∗. The total contribution from each class can be read from table 2 with the momentum

integrals given in table 3.
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I0 = =
1

(4π)6

(

1

6ε3
−

1

2ε2
+

2

3ε

)

I1 = =
1

(4π)8

(

−
1

24ε4
+

1

4ε3
−

19

24ε2
+

5

4ε

)

I2 = =
1

(4π)8

(

−
1

24ε4
+

1

4ε3
−

19

24ε2
+

1

ε

(

5

4
− ζ(3)

))

I3 = =
1

(4π)8

(

−
1

12ε4
+

1

3ε3
−

5

12ε2
−

1

ε

(

1

2
− ζ(3)

))

I4 = =
1

(4π)8
1

ε
5ζ(5)

I5 = =
1

(4π)8
1

ε
(−ζ(3))

I6 = =
1

(4π)8
1

ε

(

1

2
ζ(3) −

5

2
ζ(5)

)

Table 3: Momentum integrals.

Now we need the explicit expressions for the chiral structures χ(. . .) on single-impurity

states. For the diagram WA2 we can deform the corresponding wrapping structure

χ(1, 4, 3, 2) + χ(4, 1, 2, 3) described in [22] or we can simply obtain the explicit expression

from the diagram. We find

χ(1, 4, 3, 2) + χ(4, 1, 2, 3) =
[

(q̄8 + q8) − 2(q̄6 + q6) + (q̄4 + q4)
]

. (4.4)

All the other structures can be derived directly from the diagrams, as for WA2, or computed

using the general rules (2.5) and the definition of the deformed basis operators (2.4). We

find

WA2 ∼

[

5

4
− ζ(3)

]

λ4

ε

[

(q̄8 + q8) − 2(q̄6 + q6) + (q̄4 + q4)
]

=

[

5

4
− ζ(3)

]

λ4

ε
2 [cos(8πβ) − 2 cos(6πβ) + cos(4πβ)] , (4.5)

∑

WB∗∗ ∼ [3ζ(3) − 5ζ(5)]
λ4

ε

[

(q̄6 + q6) − 2(q̄4 + q4) + (q̄2 + q2)
]

= [3ζ(3) − 5ζ(5)]
λ4

ε
2 [cos(6πβ) − 2 cos(4πβ) + cos(2πβ)] , (4.6)
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∑

WE∗∗ ∼ [−3ζ(3) + 5ζ(5)]
λ4

ε

[

(q̄4 + q4) − 2(q̄2 + q2) + 2
]

= 2 [−3ζ(3) + 5ζ(5)]
λ4

ε
[cos(4πβ) − 2 cos(2πβ) + 1] , (4.7)

∑

WG∗∗ ∼ 2ζ(3)
λ4

ε

[

(q̄2 + q2) − 2
]

= 4ζ(3)
λ4

ε
[cos(2πβ) − 1] . (4.8)

Therefore the wrapping contribution to the anomalous dimension is given by

δγw
4 = −8 lim

ε→0

[

ε

(

WA2 +
∑

WB∗∗ +
∑

WE∗∗ +
∑

WG∗∗

)]

. (4.9)

Finally collecting all the contributions we can write the exact anomalous dimension of O1,4

at four loops

γ4(O1,4) = γ4(Oas) − δγ s
4 + δγw

4

= −16λ4
[

160 sin8(πβ) − ζ(3) cos(8πβ) + 5
(

ζ(3) − ζ(5)
)

cos(6πβ)

−
(

10ζ(3) − 15ζ(5)
)

cos(4πβ) +
(

11ζ(3) − 15ζ(5)
)

cos(2πβ)

− 5
(

ζ(3) − ζ(5)
)]

.

(4.10)

4.2 Two-impurity states

In this subsection we consider the length-four, two-impurity operators

tr(φφZZ) , tr(φZφZ) , (4.11)

and our aim is to compute their anomalous dimensions at four loops.

We make use of the dilatation operator including wrapping interactions that we de-

termined in [22], by adapting it to the deformed case through the substitution of the

undeformed chiral structures with the ones given in (2.5)

Dsub
4

+δDw
4

= (200−16ζ(3))χ(1)−(150−24ζ(3)+40ζ(5))[χ(1, 2)+χ(2, 1)]

+ (88 + 8ǫ3a + 24ζ(3) − 40ζ(5))χ(1, 3)

+ (60 − 24ζ(3) + 40ζ(5))[χ(1, 2, 3) + χ(3, 2, 1)]

−
(4

3
− 8ζ(3) − 4ǫ3a + 4iǫ3b − 2iǫ3c + 4iǫ3d

)

χ(1, 3, 2)

−
(20

3
− 8ζ(3) − 4ǫ3a − 4iǫ3b + 2iǫ3c − 4iǫ3d

)

χ(2, 1, 3)

+ 4(1−ζ(3))χ(2, 4, 1, 3)−(10−8ζ(3))[χ(1, 4, 3, 2)+χ(4, 1, 2, 3)]

− (12 + 8ζ(3) + 4ǫ3a)χ(2, 1, 3, 2) + (4 − 8ζ(3))χ(4, 1, 3, 2) ,

(4.12)

where Dsub
4

contains the interactions with range up to four, while δDw
4

contains the wrap-

ping contributions [22].

Let us first notice that applying this operator to the single-impurity state O1,4 we

immediately recover the four-loop anomalous dimension explicitly computed in the previous

subsection and given in (4.10).
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In order to compute the anomalous dimensions of the two-impurity operators (4.11)

we have to consider the full dilatation operator up to four loops:

D = D0 + λD1 + λ2D2 + λ3D3 + λ4
(

Dsub

4
+ δDw

4

)

. (4.13)

The application of this operator on the states (4.11) produces a mixing 2×2 matrix whose

eigenvalues are the anomalous dimensions we are looking for. We can write them as

γ(±) = 4 + λγ
(±)
1 + λ2γ

(±)
2 + λ3γ

(±)
3 + λ4γ

(±)
4 . (4.14)

Finally introducing the definition

∆(β) =

√

5 + 4 cos(4πβ)

3
, (4.15)

we obtain the following results5

γ
(±)
1 = 6(1 ∓ ∆(β)) ,

γ
(±)
2 = − 3

(

5 + 3∆(β)2
)

±
3

∆(β)

(

1 + 7∆(β)2
)

,

γ
(±)
3 = 6

(

19 + 9∆(β)2
)

±
3

4∆(β)3
(

1 − 51∆(β)2 − 165∆(β)4 − 9∆(β)6
)

,

γ
(±)
4 = − 3

(

410 − 99ζ(3) + 120ζ(5)
)

− 18∆(β)2
(

10 − 13ζ(3) + 20ζ(5)
)

+ 81∆(β)4
(

2 − 3ζ(3)
)

±
3

8∆(β)5
[

1 − 44∆(β)2 + 6∆(β)4
(

189 + 4ζ(3)
)

+ 4∆(β)6
(

809 − 468ζ(3) + 480ζ(5)
)

− 27∆(β)8
(

37 − 40ζ(3)
)]

,

(4.16)

where the eigenstate with eigenvalue γ(+) becomes protected in the undeformed theory

with ∆(β = 0) = 1.

We notice that in the deformed theory no BPS state survives in the SU(2) sector.

Thus, unlike in N = 4, the eigenstates of the dilatation operator change with the loop

order.

5. One-impurity states at higher orders

Now we study once again the simplest one-impurity operators and attempt to go beyond

four loops. More specifically we look at the operator O1,L = tr(φZL−1) and analyze its

anomalous dimension at higher order L in perturbation theory. Following our general

strategy one would have to consider the asymptotic contributions from DL. Then one

would have to compute δDs

L
in order to subtract the range L+ 1 interactions. Finally one

would need all the wrapping contributions δDw

L
.

The first step is actually simple since we do not need the knowledge of the asymp-

totic DL: the asymptotic contribution to the anomalous dimension of the single-impurity

operator can be obtained directly from (2.8).

5After the appearance of [26] we corrected the rational part of this result.
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Next we have to subtract the range L + 1 interactions. As discussed in the previous

sections there is only one diagram to be subtracted, i.e. the range (L + 1) graph denoted

by SL with the chiral structure χ(1, 2, . . . , L).

Then we have to consider the wrapping diagrams. At L loops there will be wrapping

contributions from one single diagram WL,0 with only chiral interactions and from the

classes with chiral structures

WL,L−1 : χ(1) + (L− 1) vectors ,

WL,L−2 : χ(1, 2) + (L− 2) vectors ,

...

WL,1 : χ(1, 2, . . . , L− 1) + 1 vector .

(5.1)

The general form of these contributions after D-algebra can be easily found for the

structures with two, one and no vectors, for L ≥ 4. At four loops we have the complete

result

• L = 4:

W4,0 − S4 = C4,0
1

ε
ζ(3) ,

W4,1 = C4,1
1

ε
[3ζ(3) − 5ζ(5)] ,

W4,2 = C4,2
1

ε
[3ζ(3) − 5ζ(5)] ,

W4,3 = C4,3
1

ε
ζ(3) ,

(5.2)

where the CL,i are rational prefactors.

Already at five loops wrapping diagrams with three vectors proliferate considerably

and we have not embarked in their computations. We computed the momentum

integrals corresponding to the classes with two, one and no vectors for L = 5 and 6,

and the integrals for the cases of one and no vectors for L = 7. The results read

• L = 5:

W5,0 − S5 = C5,0
1

ε
ζ(5) ,

W5,1 = C5,1
1

ε
[4ζ(5) − 7ζ(7)] ,

W5,2 = 0 ,

(5.3)

• L = 6:

W6,0 − S6 = C6,0
1

ε
[4ζ(5) + 35ζ(7)] ,

W6,1 = C6,1
1

ε
[20ζ(5) + 49ζ(7) − 126ζ(9)] ,

W6,2 = C6,2
1

ε
[10ζ(5) − 7ζ(7)] ,

(5.4)
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• L = 7:

W7,0 − S7 = C7,0
1

ε
[ζ(7) + 6ζ(9)] ,

W7,1 = C7,1
1

ε
[2ζ(7) + 4ζ(9) − 11ζ(11)] .

(5.5)

Even with the partial results we have listed above, several comments are in order.

First of all, as a general observation, we recall that the anomalous dimensions of

single-impurity states are not affected by the presence of a dressing phase. Therefore the

transcendentality that we read in the results at the various loop orders is to be ascribed

completely to finite size effects. We can summarize our findings as follows:

We have analyzed the anomalous dimensions of single-impurity states O1,L =

tr(φZL−1) at critical order, i.e. with operators with length equal to the loop order.

At order L = 3 we have found that subtraction and wrapping contributions cancel

each other and the net contribution to the anomalous dimension is the same as from its

asymptotic value. Wrapping at three loops seems to be irrelevant.

At order L = 4 we have computed exactly all the wrapping contributions to the

anomalous dimension of O1,4 and found that the result contains terms proportional to ζ(3)

and ζ(5).

Beyond four loops we have only partial results but a clear pattern seems to emerge:

at every loop order the level of transcendentality is increased by two as compared to the

previous order and no new rational part arises.

It becomes natural to compare this behavior to the one of the dressing phase: at three

loop nothing happens, at four loop a contribution proportional to ζ(3) arises, at five loops

ζ(5) appears and so on. What we have found indicates that finite size effects resemble the

behavior of the dressing phase contributions at the various loop orders [41, 10], increasing

by two the level of transcendentality.

Our calculation of the anomalous dimensions for the two-impurity state, where both

the dressing phase and the wrapping contribute, confirms the above interpretation.

We hope that these results might shed some light on how to implement the wrapping

interactions into a modified Bethe ansatz.

Several other issues are still completely open: among them we mention the fact that

it would be important to compute finite size effects beyond critical order, i.e. compute the

anomalous dimension of O1,L at order L+1. Needless to say that now the major challenge

resides in the comparison of the finite size contributions we have found in the weak coupling

regime with the corresponding strong limit results from string theory computations.
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A. Cancellations for wrapping diagrams with vectors at three loops

WB1 = WB2 = WB3 = WB4 =

WB5 = WB6 = WB7 = WB8 =

WB9 =

Figure 3: Wrapping diagrams with chiral structure χ(2, 1).

WB1 → −WB2

WB2 → −WB1

WB3 → finite

WB4 → −WB5

WB5 → −WB4

WB6 → finite

WB7 → −WB8

WB8 → −WB7

WB9 → finite

Table 4: Cancellations for diagrams with structure χ(2, 1).
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WC1 = WC2 = WC3 = WC4 =

WC5 = WC6 = WC7 = WC8 =

WC9 = WC10 = WC11 = WC12 =

WC13 = WC14 = WC15 = WC16 =

WC17 = WC18 =

Figure 4: Wrapping diagrams with chiral structure χ(1).

WC1 → −WC5

WC2 → finite

WC3 → −WC11

WC4 → −WC10

WC5 → −WC1

WC6 → finite

WC7 → finite

WC8 → finite

WC9 → −WC12

WC10 → −WC4

WC11 → −WC3

WC12 → −WC9

WC13 → finite

WC14 → finite

WC15 → finite

WC16 → finite

WC17 → finite

WC18 → finite

Table 5: Cancellations for diagrams with structure χ(1).
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